
AD-A242 553

INFORMATION INTEGRATION AND
SYNCHRONIZATION IN DISTRIBUTED

SENSOR NETWORKS

D.N.Jayasimha*, S.S.Iyengar *" and R.L.Kashyap

NOV 18 1991* Department of Computer and Information Science
The Ohio State University
Columbus, Ohio 43210-1277

LI ** Department of Computer Science
Louisiana State University
Baton Rouge, LA 70803-4020

Department of Electrical Engineering
Purdue University
West Lafayette, IN 47907

1, 1. |,-I I,

, 91-15182
IIII i tIl, ~lll !!t

This author's work was supported in part by the National Research Foundation under Grant No. NSF-
CCR-8909189.

This author's work was supported in part by the Office of Naval Research under Grant No. ONR-N00014-
91-J-1306 and in part bv the LEQFS- Board of Regents under Grant No. LEQFS-RD-A-04.

This author's work was supported in part by the Innovative Science and Technology (IST) program of
the SDIO, monitored by the Office of Naval Research under Grant No. ONR-N00014-85K-0611, and bv the
Engineering Research Center for Intelligent Manufacturing Systems under Grant No. CDR-8803017.

:ai

ABSTRACT

In recent years, the study of systems with multiple sensors has been an active area
of research. In this paper, we focus on the computational, i.e., architectural, algorithmic,
and synchronization issues related to competitive information integration in a
Distributed Sensor Network (DSN). The proposed architecture of the DSN consists of a
set of binary trees whose roots are fully connected. Each node of the tree has a processing
element and one or more sensors associated with it. The information from each of the
sensors has to be integrated in such a manner that the communication costs are low and
that the real time needs are met. We present an information integration algorithm which
has a low message cost (linear in the number of nodes of the network) and a low
distributed computation cost.

In a distributed environment there is no central clock which regulates the activitie&<
of each node. Further, the clock at each node is typically not accurate. The estinates
from each of the sensors which need to be integrated have to be temporally "close to
each other', however. We consider the problems associated with synchronizing
information to be integrated in the presence of imperfect clocks. ..We derive a) the
relationships between the clocks of the processing elements in the network for proper
information integration and b) an upper bound on the period between consecutive
resvnchronizations of a processing element's clock with the central time server. -Finally,
we discuss the fault tolerant features of the network and the integration algorithm.

KEYIVORDS and PHRASES : Distributed Sensor Network, Integration Algorithm,

Fault Tolerance, Clock Synchronization, Abstract Sensor
Estimate.

I'

1.0 INTRODUCTION

In recent years the study of multisensor systems has been an active area of

research [14, 4, 2, 11, 10]. Our interest is in multiple sensor systems which consist of tens or

even hundreds of sensors. Such a system is usually organized as a distributed sensor

network (DSN) which consists of a set of sensors, a set of processing elements (PEs), and a

communication network interconnecting the various PEs. One or more sensors is

associated with each PE. A need for DSNs arises in diverse applications such as

intelligent robotic systems, aircraft navigation, systems which monitor the activities on an

industrial assembly line, etc.[4, 10, 15]. A significant advantage offered by the integration

of information from disparate sensors is that the reliability and the fault tolerance of the

sensor system are both enhanced. Another advantage is the suppression of the effects of

noise. This is because the noise measured by different sensors tends to be uncorrelated,

while the signal of interest remains correlated. Also, by careful selection of disparate

sensors, one can compensate for the shortcomings and peculiarities of particular types of

sensors.

The method of integrating information from the various sensor outputs, called

information integration, depends on whether the sensors provide a) competitive

information or b) complementary information [4, 2]. In the former case, each sensor

ideally provides identical information. In reality, however, the information provided by

each sensor may vary widely because of a variety of reasons such as the noise at a

particular sensor site, unreliable transmission due to channel failures, loss of accuracy in

translating information from disparate sources into a common information medium. It is

therefore necessary for the information from the sensors to be combined in a meaningful

and efficient manner to obtain a fairly accurate result. Complementary information

integration is done when only partial information is available from each sensor; such

information is then integrated to build the complete information. Note that in either

case, we need an abstract model of the sensor to compare or combine the information

from disparate sensor sources.

1.1 SCOPE OF THIS PAPER

2

From the foregoing discussion, it is clear that the integration of multiple disparate

sensors into an effective sensor network requires the solution of several problems. These

problems could be broadly categorized into two categories:

(a) Those related to sensor modeling and

(b) Those related to sensor information integration.

Examples in the first category include the problems associated with the

specification of appropriate sensor parameters [41 or the probabilistic model of individual
sensor performance [1]. Examples in the second category include methods needed to
abstractly represent the information gained from sensors so that this information may

easily be integrated and also methods to deal with possible differences in points of view
on frames of references among multiple sensors [1, 8]. For an excellent discussion of the
problems and current state of the art in multisensor integration, the reader is referred to
the survey paper by Luo and Kay [10].

In this paper we focus on the architectural, algorithmic, and the clock

synchronization issues related to competitive information integration needed in the
distributed sensor network. Our paper discusses the situation when the sensor outputs
are connected intervals on the real line R. Our interval estimates are tolerance zones
containing sensors associated with the PEs of the distributed sensor network and our
technique of integration focuses on obtaining reliable regions for correct sensor values
with fault tolerance. These issues have not received much attention in the context of
multisensor systems. The architectural issues are discussed to a certain extent by [5, 15].

1.2 ORGANIZATION OF THE PAPER

The paper is organized as follows: In section 2 we give the architecture of the DSN

under consideration. Our abstract sensor model, detailed in section 3, is an extension of

the model developed by Marzullo[12. In section 4, we motivate the need for clock
synchronization and present the information integration algorithm. In section 5, we
present certain fault-tolerant features of the network and the integration algorithm.

Section 6 contains some concluding remarks and the future directions this research
could take. The Appendix presents a computational characterization of the integration
algorithm using Heaviside functions.

3

2.0 ARCHITECTURE OF THE DSN

Two types of architectures for distributed networks have been discussed by
Wesson, et. al [131, namely the committee (or anarchic) organization and the hierarchical
organization. In a committee organization, each node (i.e., the PE and its associated
sensors) in the network is autonomous and can broadcast information to all other nodes
in the network. In a hierarchical organization, the nodes are assembled as strict
hierarchies of abstraction levels. At each level, nodes receive information from the lower
level nodes, integrate the information received according to their position in the
hierarchy, and send abstracted reports to nodes at higher levels in the hierarchy. The
node at the highest level, called the commander, makes appropriate decisions based on
the received information, globally interprets the required hypotheses, and controls the
network appropriately.

The committee organization, which requires O(N 2) interconnections in an N node
DSN, would be expensive and practically infeasible when one considers a large number

of nodes. The hierarchical organization, on the other hand, does not suffer from this
disadvantage (it requires O(N) interconnections in an N node DSN), but could produce
inaccurate estimates since data sharing is not allowed between the low level sensors and

since errors accumulate as one goes up the hierarchy.

In this paper we consider a DSN consisting of several clusters. Each cluster is

organized in a hierar :hical manner as a binary tree of nodes. Each node has a PE and an

associated sensor. The leaf nodes are at the first level of the network. The parent of a

node is at one level higher than its children. A clock runs on each PE. There is a message
buffer associated with each channel as shown in Figure 2.3. After the information is read
by a sensor, the associated PE translates that information into an abstract sensor
estimate (more detailed description on abstract sensor estimate is given in the next
section), time stamps the estimate with the current time and places the abstract estimate

in the buffer (see Figure 2.3). The root of each cluster, called the commander, forms a

complete interconnection with all its peer nodes. Such an architecture illustrated in

Figures 2.1, 2.2 and 2.3 could be thought of as a hierarchical system with a committee

organization at the top level. Each PE communicates to its children or its parent over

channels through messages.

4

In addition to the issues already mentioned, we are also interested in the fault

tolerance of the system, i.e., the individual sensors could be faulty but the ensemble of

sensors should possess reasonable fault tolerant properties. We address the issue of
fault tolerance briefly in Section 5. Fault tolerance, however, is not the primary focus of

the paper.

Some of the important issues which need to be examined are:

(i) How should the observations available at a sensor or a sensor cluster be

processed so as to recover the relevant signal parameters ?

(ii) What are the message routing strategies for the network?
(iii) How does internodal coupling affect obtaining of unbiased estimates of a

parameter?

(iv) How do we structure the signal processing duster units?

The first issue is discussed in detail in the next two sections. The second issue,

message routing involves considering the time delays in message passing in distributed
sensor networks. In Section 4, we present a clock synchronization scheme which
integrates information considering time delays. The other issues of importance related to

message passing, which, however, are not examined in detail in this paper are: a) fail-safe
message passing strategies and b) message routing strategies when there exist multiple
paths between two nodes in the DSN. To illustrate a problem relating to the third issue,

consider Figure 2.4. The estimate that P receives from L could itself be a function of P's
estimate since, in addition to the path from L to P, there exists a path from P to L. As a

result, the combined estimate calculated at P could be biased estimate favoring P's

estimate since the latter has been included twice in the calculation for the combined

estimate.

CommanI a mmanlNrd

SENSOR LUSTER HERRCHIAL
UNIT SENSOR NETWORK

SENSOR NETWORK

Figure 2.1 Overview of DSN Architecture(DN

Leaf Node Leaf Node Leaf Node Leaf Node

Figure 2.2 Sensor Cluster Unit

6

To other Commander nodes
From time serverf/

Froerrup Details of a
Pmmander Node

Sensor

To node at ;evel i+1

Ine p Details of an internal
Buffers node at level i

SensorD o er

From
time

tails°f 4
~a leaf node

Figure 2.3 Details of the sensor cluster unit

I I

Figure 2.4 L's integrated sensor value that P obtains could itself be a
function of P's value since there exists a path from P to L.

We focus mainly on the first two issues in this paper. The other issues do not

concern us since we restrict our discussion to a distributed sensor network with a

complete binary tree of nodes at each cluster unit and with unidirectional information

flow from nodes at the lower level to the nodes at the higher level.

3.0 THE ABSTRACT SENSOR MODEL

A physical sensor is a device which samples a physical variable. For example, a PE

controlling a surveillance satellite antenna might have an infra-red sensor as a physical

sensor. The PE mav obtain measurements either by polling it lor its current value or by
being asynchronously alerted when a certain signature is detected. Assume for simplicity

that each sensor outputs a single value represented by a real number. In reality, however,

because of reasons such as a) limited accuracy of the sensor, b) effect of noise signals, c)
various delays (the communication delay, for example) between the time ts that the value

is read and the time tp that the value is processed by the PE, and d) inaccuracy in

knowing the correct values of ts and tp in distributed systems, it is not meaningful for

the sensor value to be represented by a single real value. (Note that to consider the effect
of c) mentioned above, the extrapolation characteristics of the process have to be known).

Hence we define an abstract sensor to be a piecewise continuous function which maps a
physical sensor value v (v e R) into a dense interval [a, b] (a,b G R) that contains the

,hvsicai value. The width of an interval is (b-a). Ideally, this interval [a, b] converges to v

but, in reality, the width is finite. This abstract sensor model is based on the work of

%farzullo [12]. He also shows that given a physical sensor, it mav not be easv to implement

8

the corresponding abstract sensor, as it requires knowledge of the characteristics of the
physical process being monitored. We assume that this knowledge is available. In many
cases when the characteristics are only approximately known, a high sampling rate will
compensate for this lack of knowledge. We use this model to construct a fault-tolerant
abstract sensor.

The abstract sensors representing two or more sensors could be combined to form
an abstract estimate. To keep the terminology simple, we refer to the abstract sensor as
the abstract estimate also. An abstract estimate could, in turn, be combined with one or
more abstract estimates to form a new abstract estimate. A k-interval abstract estimate is
defined to be an empty set or a set of up to k intervals {(11, ul),. ,(li, ui)} (where 1 < i < k)
such that lj < uj (where 1 5 j < i) and uj < lj+1 (where 1 < j < i-). Observe that these intervals
do not overlap. If any two did overlap then they would be in one interval. The width of a k-
interval abstract estimate is defined to be the value:

k

X(ui - li)
i=1

The next section addresses the question of how the abstract sensors or abstract
estimates are combined to yield new abstract estimates.

4.0 INFORMATION INTEGRATION OF ABSTRACT ESTIMATES

In this section, we present a method to combine information from multisensor

systems which we call information integration. Before we present the actual algorithm, we
motivate the need to combine the information from different sensors and also show that

the meaningful combining of information necessitates proper clock synchronization

which is non-trivial to achieve in a distributed environment such as ours.

4.1 MOTIVATION

Structuring sensor information is a prerequisite for the integration problem in the

cluster-tree network. Suppose a node A at an intermediate stage of the network receives
abstract estimates (11, ul) and (12, u2) from its two children. Assume that 11 < 12 and that the

two intervals do not overlap. Node A can communicate the 2-estimate <(1, ul), (12,u2)> to

its parent to signify that the true value lies in one of the two intervals (which of the two

intervals contains the true value would be resolved at a higher level) or it could transmit a
1-estimate (11, u2). Each interval requires the communication of two values. Observe that

in the former case, at stage i of the network, 0(2 i) number of values need to be
communicated by a node. This has a number of disadvantages: a) high communication
cost and b) high computation cost at the root node (commander node in our case). Since
these estimates are usually a function of time, real time needs may preclude the
computation of estimates which have an exponential growth rate at the root node. On the
other hand, in the latter case, the communication requirements are lesser (later we will
characterize this measure more precisely) and the computation requirements are
distributed among all the nodes. The accuracy of the result could suffer, however. In the
example considered, we transmit a 1-estimate (11, u-2) even though we know that the true
value is not in the interval (ul, 12). From the above discussion it is clear that a) there is a

trade-off between accuracy and communication and b) the width of an estimate is
inversely proportional to the accuracy. This suggests that the width could be used as
measure of inaccuracy assuming, of course, that the true value is to be found in one of

the intervals of the estimate.

In reality, the disparate sensors may require a set of variables to represent each
output. Each of these variables could itself be represented by a vector of values. If there
are m values representing the state of the system and each value is represented by a k-
interval abstract estimate, then the state of the system (each time the sensors are
sampled) could be represented by a (m x k) matrix.

From the above discussion, the need for combining information at the nodes of the
network to reduce the communication and to distribute the computation is clear. Any
information combining algorithm should possess the following desirable properties:

(i) low message complexity,
(ii) distributed processing uf information,
(iii) reasonable fault tolerance.
(iv) reasonable accu-dcv, i.e., the true physical value(s) should be very likely

found in the combined estir-ate with the width of the estimate being low.

A variety of teclniques including use of weighted averages, Kalman filter, multi-

Bayesian approach, statistical decision theory, and fuzzy logic have been used in
multisensor integration [101. We shall present a simple and intuitively appealing
integration algorithm based on estimates represented by intervals. Our method is based

on the rcasonable assumption that overlapping intervals are likely to contain the value(s)

It)

of interest. This method could be considered as a variation of the use of weighted

averages as applied to intervals. As we shall see in Section 4.4, even this simple

integration algorithm becomes intricate after it is "clock-synchronized". A future goal of

this research is to consider more sophisticated integration algorithms after clock

synchronization is well understood. In the next section, we discuss the development of

the integration algorithm. For explanatory purposes, we consider 1-interval abstract

estimates.

4.2 DEVELOPMENT OF THE INTEGRATION ALGORITHM

The idea behind the one interval integration algorithm is the following: an

overlapped interval (if it exists) is more likely to contain the correct value of the physical

variable of interest than a non-overlapped interval. This idea is similar to the N-modular

Redundancy (NMR) technique used in many passive and hybrid fault tolerant systems

(N = 3 in our case) [7]. Since we use intervals rather than single values as the abstract

sensor estimates, it is possible, in general, to have two or more distinct overlapping

intervals as the estimate. With a 1-interval estimate and a binary tree network, each

node has to integrate three abstract estimates (one from the associated sensor and one

each from the node's two children). The four ways in which the estimates could overlap

are shown in Figures 4.1(a)-(d). The only case of distinct overlapping intervals that arises

is shown in Figure 4.1(b). It is also possible that no intervals overlap (Figure 4.1(d)). In both

these cases, we choose an estimate that spans the intervals of interest. By doing so, our

estimate would contain sub-intervals that are unlikely to contain the correct value of the

physical variable (examples are SA in Figure 4.1(b), SB and SC in Figure 4.1(d)). From

these observations it is also clear that the inaccuracy of the estimate is proportional to the

width of the estimate. Each estimate, however, is a single interval and is transmitted as

one message over the communication link. When information is not integrated, however,

the number of messages sent by a PE at level i in the worst case is (2i - 1). Thu,, there is a

trade-off between accuracy and communication. The reader is referred to [6] for further

discussions on message complexity. Further, note that when the non-root PE p does not

perform any information integration, the computation time at the root node increases.

The computation time with information integration turns out to be better than that

without information integration by a factor of O(n) where n is the number of nodes in the

network [()I.

11

Consider two 1-interval estimates given by the intervals <11, ul> and <12, u2>. Let

I ul - 121 = 0. If ul > 12 then the integration algorithm chooses the intersecting interval of

width (ul - 12). Otherwise (i.e., ul < 12) the algorithm chooses the spanning interval of width

(u2 - !1). Clearly, this is undesirable since small errors could result in choosing estimates

with large derivations. We therefore require that for two intervals to be considered

intersecting, the width of the intersecting interval be at least A (this width is a design

parameter chosen depending on the sensor characteristics, the roundoff errors

introduced by the PE, etc.)

4.3 CLOCK SYNCHRONIZATION IN DSN

Since the physical sensor outputs typically change as a function of time, it is

necessary for each of the estimates that are integrated to be "close to each other"

temporally in order for the integration process to yield meaningful results. This is

achieved by time-stamping each estimate. If the estimates from different sensors are to

be synchronized to obtain a final estimate at each of the commander nodes, then it is

necessary that the sensors be sampled at approximately the same time.

12

IiI

12 -4 12 4

13 13

Result Result

(a) (c)

Ii ~i~i;'!iIi1- iiiii:

12 12

13 13
Result "Result

(b) (d)

Figure 4.1 I, 1Z 13 are the abstract estimates. Result is the
1 -interval abstract sensor computed by the algorithm. Note
that SA, SB, SC are intervals included in the Result even
though they are not intersecting intervals.

In a distributed environment such as ours, there is no central synchronized clock which

regulates the activities of each node. Instead, each node is under the control of its own

clock. Since a sensor responds to real time activities, it is convenient for the clock at each
node to provide the real, i.e., physical time. Further, since the estimates from different

sensors have to be integrated, it is convenient to have the time provided by each of the

sensor nodes to be close to each other. The clock at each node may not be accurate

because of a variety of reasons such as clock shift, variations in temperature, etc. Each

clock therefore has to periodically synchronize with a more accurate clock. We assume

the existence of a central time server on one PE of the network which, when requested for
the time at t, provides the time C(t). It is possible, though unlikely when fast real time

communication is achievable, that in the case of some DSNs which are geographically

spread out , there will be a need for many time servers. Since the time provided by two
time servers mav themselves not agree, clock synchronization with multiple time servers

is more complicated than with a single time server (for a detailed treatment, see [9). The

13

central time server itself periodically synchronizes with a universal time server. The latter

is always accurate and lies outside our environment.

4.31 Clock Behavior and Synchronization

In this section we formalize the notion of integrating abstract estimates which are

temporally "close to each other" by deriving an upper bound on the time interval

between the arrivals of two abstract estimates at a node. Let Cp(t) be the time provided

by the clock on PE p at time t. Note that t itself is not observable by PE p, nor by any of the

other processing elements.

Let us assume that the time Cp(ti) provided by PE p be greater than C(ti), the time

provided by the central time server. Let p now synchronize with the central time server. It

is now possible that the new time Cp(t2) is less than Cp(ti). An abstract estimate sent out

later at Cp(t2) seems as though it was sent earlier. If the abstract estimates are integrated

in a non First-in First-out fashion at a node, this could lead to problems. Hence, we

require that the time on a PE to always increase monotonically. This monotonicity could

be achieved by speeding up or slowing down a PE's clock each time a correction is

required on synchronizing with the central time server [3].

From the foregoing discussion, we can now state the following requirements for

proper synchronization (the subscript p refers to the PE p):

Requirement 1: Correct Time: The deviation in time of each clock is bounded.

It-Cp(t) h< Ep (a)

It- C(t) 15 ax (1b)

Where Ep: is the maximum allowable deviation in time of a clock

on a PE.

CX: is the maximum allowable deviation in time of the

clock on a central time server.

Requirement 2- Correct Rate:

Between resvnchronizations, the drift rate of the clock is bounded,

14

dt -

dC(t)
1 I(b

Where i¢p: is the maximum allowable drift rate in time of a dock

on a PE.

0: is the maximum allowable drift rate of the clock on

the central time server.

Requirement 3:

The clock on each of the PE p and the central time server increase monotonically.

We have assumed that the quantities Ep,iCp,C(,a are all fixed and are known. (These

quantities could be obtained from the specifications of the manufacturer's handbook.) If

these quantities are time varying, then the analysis becomes very complicated. For

simplicity we will assume that the constants Cp is the same for all PEs and equals E.

Similarly it is assumed that Kp = K. From this simplification and Requirement 1, the

following inequality follows. Let Cq(t) be the time provided by the clock on FE q at time t.

Requirement 4: Synchronization Bound

I Cp(t) - Cq(t) 15 2C (3)

Let rnin and 4max be the minimum and maximum values of the delay in receiving

the message sent by the central time server to any PE (the message contains the time C(t)

at time t). Let amin and 5max be the corresponding values for a message sent by a PE to

its neighbor. Let 7 be the maximum tolerance in time that a node can tolerate between

intervals that can be integrated. This value of y has to be derived from the sensor

characteristics and the longest path between the leaf nodes and the commander node

(Flog n] in our case where n is the total number of PEs).

The following lemma and theorem are used to state precisely the conditions for

combining abstract sensor estimates which are temporally "close to each other."

Lemma 1: Let a message be received by PE p at Cp(t). Then this

15

7

message was sent by PE p or its neighbors in the interval

[Cp(t) - 2, - &max , Cp(t) + 26 - rin]

Proof: The proof is trivial if the message was sent by PE p's sensor since Cp(t) lies in the

interval.

Whenever a node sends a message, it time stamps the message with the current

time. Because of the delay characteristics of the channel connecting PE p to its

neighbor, the message was sent in the interval

[Cp(t) - 6max, Cp(t) - 6min

according to p's dock. Let TS be the time stamp on the message. Then from (3), it

follows that

TS E [Cp(t) - 2, - 8max, Cp(t) + 2, - rnin] M

The time stamp may not belong to the interval, say, if the channel becomes faulty.

Definition: Let an abstract estimate time stamped at TS be received by PE p at time

Cp(t). The estimate is said to be proper if

TSe [Cp(t)-2E -6max ,Cp(t)+2e - min].

Theorem 2: Let the three proper abstract sensor estimates 11,12 and 13 be received by PE

p at times

Cp(tl) < Cp(t2) < Cp(t3) respectively

Then Ii (i = 2, 3) can be integrated, iff

(Cp(ti) - Cp(tl) + 46 + -ax - min) _ (4)

Proof: Since the estimates are proper estimates, we can deduce, using Lemma 1, that

these estimates originated in the interval

[Cp)(. - 2.- 6 , "-ax CO 2)-] ()

(1 5 j 3

16

If 12 is to be integrated with Ii, the spanning time interval of estimates I1 and 12

should at most equal y, the maximum tolerance in time that a sensor can tolerate.
The spanning interval is obtained from (5) with j = 1, 2 to be

Cp(t2) - Cp(ti) + 4E + 6rnax - 6mm

Similar argument can be made for integrating 13 with Ii. Inequality (4) then follows.

4.32 Clock Resynchronization

Since the docks on the central time server and each of the PE s drift, they have to
be periodically reset. In this section, we derive an upper bound on the time period
between resynchronizations.

Let Ts be the time period between resynchronization of the central time

server.

Let Tc be the time period between resynchronization of the clock on a PE p.

The central time server resynchronizes itself every Ts seconds with a perfect
universal time server which exists outside the environment of our DSN. The central time

server also resynchronizes the clock on a PE every Tc seconds.

Let T' and Tc be the periods corresponding to Ts and Tc as observed by the central

time server.
Lemma 3: The period, as observed by the central time server, between

synchronizations of the central time server is bounded by

< (IS-~~

Proof: From (Ib) and (2b), we can derive

G Ts_< a

17

f

FTs Ts1
From (2b), Ts is in the interval L1 T1

Hence (T 51 < a

i.e., Ts <a C7- I

Observation: When a PE p is resynchronized by the central time server at time t, there is

a transmission delay of at least 4min before the value C(t) reaches p. Hence

Cp(t') C(t) + min

Because of the drift in the central time server and the variable transmission delay

Cp(t') lies In the interval [Cp(t) - .3Ts + 'min, Cp(t) + GTs + "max]. Hence, there could be an

error of (2aYTs + max - min) at the time that p's clock is resynchronized. From (la) and

(2a),

2aTs + (4max - in) + K Tc _< C (6)

A restatement of (6) is Theorem 4.

Theorem 4: The time period between resynchronizations of the clock on a PE is bounded

by

C-2r3Ts- (maxm-)min
Tc < (7)

Proof: Arguments in the previous paragraph. U

Observation: A restatement of (7) with observable times on the central time server is

_- _- (max- min)
1(8

IC S:K-(8

Using the clock and network parameters, we can rewrite the equation (8) as

follows:

18

t

T F'- 2X- (4max- min)(91T< -_ 9

4.4 A CLOCK SYNCHRONIZED INFORMATION INTEGRATION
ALGORITHM

This section presents a clock synchronized integration algorithm using the ideas

presented in the previous two sections. At each node the integrated information is a 1-

interval abstract sensor Ip computed from the three abstract estimates I1, 12, 13 received at

each node Thus

Ip = D (Ii, 2, 13)

The computation of the function D is the information integration algorithm. As we

have mentioned earlier, we consider only a 1-interval information integration algorithm.

Further, we assume that the state of the system at any instant can be represented by a

single value. (The algorithm can be extended in a straightforward manner for the case of
a vector of values (see the Appendix) with each value being represented by a k-interval

estimate.)The algorithm, called OneInterval _Integrate and shown in pseudo-Pascal on

the next page, computes the 1-interval abstract estimate at a node p and sends it to its

parent ti,,re st.ping it with the current time CT. Procedure FORIM I1 2 13, which is
repeatedly called as a procedure by OneInterval_!ntegrate, integrates the 1-interval

abstract estimates that are temporally close to each other ising lemma 1 and theorem 2.

19

Algorithm OneIntervalInteg rate;

P A The minimum width of overlap for two intervals considered intersecting. .1

,' CT Current time as seen by a processing element clock. "/
P I0 Integrated abstract sensor estimate. /

1. Begin FORMI1 12 13
2. if (width (h1n12 n13) * A) then /* See Fig. 4.1(a) *1

3. I1 +- lowest value in the intersecting interval;
4. hi 4- highest value in the intersecting interval;
5. else If (width (Inj) _)and(width (Ijrlk).A)then (i # j j k, i * k, 1 s i, j, k ! 3)

/*See Fig.4.1 (b)/
6. h - lowest value in the left intersecting interval;
7. hi ,- highest value in the right intersecting interval;
8. else If (width (Ll j)_A) then (i * j, 1 < i, j < 3) ," see Fig. 4.1(c) 1

9. 11 *- lowest value in the intersecting interval:
10. hi - highest value in the intersecting interval;
11. else / no intersecting intervals - see fig. 4.1(d) °/
12. 1 1- lowest value in the spanning interval;
13. hi -- highest value in the spanning interval;
14. fi
15. fi
16. fI
17. 1 ,- [1-', h];
i a. if p is not the root then

19. send(parent(p), ID, CT);
20. fi
21. end.

20

I

Procedure FORMI1112_13

/" Computes the K-interval abstract sensors associated with a PE's abstract sensors and the PE's
children*/
/* Buf is a FIFO buffer into which messages of the form < abstract sensor, time stamp > are sent by the
abstract sensors and received by the PE p */
/" empty (buf) is true when there is no message in the buffer
/* The variable CT in each PE has the current time /

1. begin
2. done := false;
3. while not done do
4. receive(I1, t);

5. Iftin [CT- 2E - Smax , CT + 2e - 8min]then /* from lemma 1"/

6. done "= true;
P i.e. I1 is a proper K-interval abstract sensor /

7. first sensor time : CT;
P store the Time at which first proper K-interval abstract sensor read /

8. fl
9. od
10. 12, 13 o;
11. if p is the leaf PE then
12. goto L3; / exit a leaf PE that does not have any children "
13. ft
14. Li: empty_2&3 := false;
15. while empty(buf) do

/* if current time exceeds the max transmission delay d then set 12, 13 <- o '/
16. if ((CT- first_sensor) + 4E + Smax - 5min) > ythen ,* from theorem 2 /
17. 12+-o0;13 <--06;

18. empty_2&3 := true;
19. fl
20. If not (empty_2&3) then /" a K-interval abstract sensor was read "
21. receive(12, t);

22. ifnot(tin [CT - 2c - 8max, CT + 2c - min])then /fromlemma 1"/

P" i.e., this abstract sensor is not a proper abstract sensor "
23. go to Ll:
24. ft
25. L2: empty_3 := false;

/* the 2nd proper abstract sensor has been read. Wait for the third one "
26. while empty (buf) do
27. if ((CT- firstsensor) + 4E + 6max - 5min) > yf then /* from theorem 2 /

28. 13 4-- 0;

29. empty_3 := true;
30. fl
31. od
32. if not (empty_3) then /° third K-interval abstr3ct sensor was read V

33. receive(13, t);

34. Ifnot(tin [CT - 2f - Smax . CT + 2E - 8mn]) then /*from lemma 1"

/" i.e., this abstract sensor is not a prooer abstract sensor
35. go to L2;
36. ft
37. go to L3:
38. fi
39. fi
40. od

21

41. end procedure.

Observe that in our integration algorithm, the abstract sensor estimate associated

with a PE at level i could affect the information integration in the same manner as the
aggregate information produced by the children of the node rooted at level i. This

method of integration could be altered by assigning weights to the intervals such that the

individual sensor's abstract estimate is not as important as the abstract estimate

produced by the aggregate. A sensor's abstract estimate could be weighted, for example,

in inverse proportion to its level in the hierarchy.

In the Appendix, we present a computational characterization of the combination

function for 1-interval abstract sensor estimate and for k-interval estimates using

Heaviside functions.

5.0 FAULT TOLERANT ISSUES

Assuming that the PEs in the network are reliable, the main sources of faults in our

system are the sensors, the channels connecting the PEs, and the various docks including

the central time server. We look at each of the faults and their effects.

Sensor Faults: An abstract estimate is faulty if the associated sensor produces a faulty

output. Observe that if c (c _> 2, c = 2 or 3 in our case) abstract estimates are non-faulty,

then the intervals represented by the estimates must intersect. On the other hand, if two
abstract estimates are faulty, then it is quite unlikely that the faulty estimates overlap

because of the unpredictable nature of the associated sensor faults. Consequently, with
the presence of even one non-faulty abstract estimate, the 1-interval abstract estimate is

highly likely to contain the correct abstract estimate. Of course, with the presence of two

faulty abstract estimates, the inaccuracv of the 1-interval abstract estimate increases

since the interval of the estimate is wider. This reasoning carries over to the higher level

nodes where the 1-interval abstract estimates are also integrated. Our network, hence,

tolerates faults well and degrades gracefully as the number of faults increase. Further,

the effect of a fault is not propagated but localized tc that node -nd, a ;- a -l i 1t cidren. T he
network is thus resilient to failures. In the unlikely case of all the faulty abstract estimates

having overlapping intervals, the number of faulty sensors that the network can tolerate

is approximately n/8 (n is the number of nodes in each cluster; for a derivation of this

result see (6]).

22.

Observe that from a computational point of view, noise signals which significantly

alter the output of a physical sensor and faulty sensors are indistinguishable- both result

in a faulty abstract estimate. The arguments which we made to justify the fault tolerance

of our scheme would now hold in a situation where there is a low signal to noise ratio and

the noise signals picked up by the various sensors are uncorrelated.

Channel Faults: Observe that if the channel fails or is very slow, i.e., when the

transmission time exceeds 6 max, a proper abstract estimate will not be received by the

PE. The information integration algorithm essentially ignores the message passing

through the channel but continues with the integration of the other estimates. Again, the

DSN does not fail but degrades gracefully.

Clock Faults: Even through the clocks are imperfect, the integration algorithm works as

long as the requirements specified in section 4.31 are met. When a clock on a PE fails,

however, it would then transmit only the abstract estimate associated with its sensor (this

is because the PE has no way of knowing that its clock has failed). Since the estimate is

timestamped, it would not constitute a proper estimate to its parent node (unless the

parent node has also failed in an identical manner which is highly unlikely!). Hence, the

effect of a clock failure is limited to the node and the nodes rooted at that node. Further,

since every clock is periodically resynchronized, the effect of a clock failure lasts only

between resvnchronizations.

In our DSN, we assumed the existence of a single central time server. The failure

of the central time server is problematic, however. One solution is to have a number of

central time servers. These are several intricate problems that need to be solved in using

manv central time servers. For a discussion, the reader is referred to [9].

Observe that in our DSN, the effect of the failure of a node or channel at the

higher levels of the network is more drastic than a failure at the lower levels. It would be

worthwhile to investigate DSNs in which these failures have the same effect irrespective

of their position in the network.

6.0 CONCLUSION

23

The effective use of multisensor systems requires the solution of various problems

relating to sensor models, the architecture of the sensor network, the integration of

information at each node of the network, the cost of information transmission, and the

fault tolerance of the network. The integration of information in real time requires the

clocks at each of the nodes be synchronized. Synchronization of docks is a non-trivial task

in such distributed sensor networks. In this paper we have proposed an architecture

based on binary trees for the sensor network and considered a) how information could be

integrated in real time when docks at the nodes are not perfect; b) how information could

be efficiently transmitted without incurring heavy communication costs; c) how the

network is tolerant to certain types of faults. As far as we are aware, this is the first study in

the area of distributed sensor networks that looks at the various computational issues in

such networks. Since our focus has been on the issues just mentioned, we have chosen to

represent information with a simple and elegant model based on real valued interval due

to Marzullo [12]. We are aware that sensor modeling is itself a detailed area of study [2,

101. We have assumed that the output of each sensor is a physical value. The above

discussion and results easily extend to the case when the output of a sensor is a vector

rather than a single value.

This study could be extended in several directions. A straightforward extension, as

suggested at the end of Section 4, is to assign weights to the abstract estimates produced
as a function of its level in the hierarchy A future goal of our project is to investigate more

sophisticated integration algorithms and also other sensor models. Depending upon the

application that a DSN gets used for, other DSN architectures could be studied. An

architectural study could also be based on the fault tolerant properties desired. Finally,

this study can be extended to the integration of complementary information.

ACKNOWLEDGMENT

The authors would like to thank the three anonymous referees for their comments
which helped improve both the form and content of the paper.

APPENDIX

COMPUTATIONAL CHARACTERIZATION

A,! 1-!nterz'al Abstract Sensor Estimate

24

We define a useful and familiar function which will form the germ of the algebra

of information integration, to characterize the output abstract sensor estimate Ip which

depends on the input abstract sensor estimates II, 2, 13. We first consider the case of 1-

incerval abstract estimates and then go on to generalize the idea to k-interval abstract

estimates.

0 Vx<a

Define Ha (x) 1 x a

(H)

0 a

Figure A.1 The Heaviside function.

Ha(x) is called the Heaviside function (Figure A.1).Using this function we can

construct a function which takes the value I over a desired interval say [a,b] and zero

everywhere else as follows:

Set

Hla,bl (x)= Ha(x) (I - Hb(x))

This clearly is the required function (Figure A.2).

25

Ha (u)

1 Hb (H)

o b

o a b

Figure A.2 Construction of the function of the desired interval.

Indeed:

I a:a b

HI, bl (X) = 0 Vx _b

The set of values for which a function is non-zero is called the support Supp of t' c

function.

Thus, Supp [Hlia, bj Cx)] = [a, b).

It is easy to see that

f H[a,b(x) dx = b-a.
-0

This gives the width of the interval [a,b).

Let Ii = [ai,bi], 12 = [a2,b2], 13 =[a3,b3] be the 1-interval abstract sensor estimates

entering the processor p. We wish to integrate the above inputs into an output which is a

reliable index of the sensor values. To achieve this we follow the prescription of the

26

integration algorithm and obtain a functional realization using the Heaviside function

and other auxiliary functions.

Define HIi (x) = H (x) (1 - Hbj(X)) V 1 <j3.

Thus Hj (x) has support Ij, i.e., Supp [H I = Ij = H (1)

We consider three possibilities for the 1-interval sensor inputs with regard to their

relative positions inducing overlap or reinforcement of sensor information and integrate

in each case the inputs in accordance with the integration algorithm to get a fault tolerant

output Ip.

Case (1)

Ijr)IK4= Vj#k, 1_< j, k< 3.

Here the function HI1 + H1 2 + H 1 3 has its support as a reliable estimate of the

possible region of the value of Ip: the output abstract estimate. The support is the union

of the disjoint intervals I1, 12, 13 (Figure A.3).

HIP(x) = H 1 (x) + HI2 (x) + HI3 (X)

27

0 a biH, (H)

t b2

0 a3 b3II H (x)

a, bi a2 bt2 a3 b

Figure A.3 Support function characterization for the union of disjoint intervals.

Case (2)":

(Ij rIK forsomej*k 1 j,k <3) A (Iin12 r)I3 =)

Here the function H, 1 H12 + H12 H13 + H1 H has its support as a reliable estimate

of the possible region of the value of Ip. The support is the overlap regions of the disjoint

intervals I1, 12, 13 (Figure A.4).

H (x) = H 1 I I2 + 1112 tti3 + 1I13 HI1

28

H11 H

01i

H 2 (H)

a2 b2 HI UH 13 (H)

3b3

a2 b1 a3 b2

Figure A.4 Support function characterization of overlap
regions of the disjoint intervals I 12,I3-

Case (3)

I I 2 r 13 # .

Here the function H11 H12 H13 has its support as a reliable estimate of the possible

region of the value of Ip. The support is the common overlap region of the intervals Ii, 12,

13 (Figure A.5).

29

H 1(x)

2b2

H Wx

a 3 b3I H ii(x)

a 3 bl

Figure A.5 Common overlap regions of the intervals 1 I, and 13.

However, it is desirable to have just one function subsuming the above three cases

so that the job of checking for the kind of overlap of intervals can be avoided. To effect
this computationally we define a selector function f on functions as follows:

If g : R -4 R is any single valued real function, then define:

,(g(x))= V{ x E Rifg(x) >1 forsomexE R
I V x E R ifg(x) 1 for V xE R

This function chooses the zero function or the function g(x) at hand accordingly as
to whether g(x) takes value greater than 1 or stays strictly less then or equal to 1. We need
to choose in cases 1,2 and 3 the appropriate function constructed under the case. While
amagarnating these functions by means of a sum we need to suppress [he other two
functions since they are irrelevant. Hence we operate the selector function f taking

30

advantage of the fact that the irrelevant functions are themselves zero or take values

greater than 1.

Now define Hip(x) as follows:

Hip(x) =f(Hi1 +HI2 +HI3) +f(HI1HI2 +HI2HI+HI3HIl) +f(H 1 HI2HI)

Ip = H (x) is the desired output abstract sensor estimate. This is not in general a

1-interval estimate, but gives a sharper and narrower estimate than the associated single

interval estimate in the algorithm. We however can obtain a single interval estimate also

by filling up the gaps as shown later.

The total interval width of Ip is given by

W(Ip) = f HIp(x)dx
00

We generalize these ideas and results to obtain a functional characterization of

the combination function for a k-interval abstract sensor estimate.

A.2 The Combination Function for k-Interval Estimates

Suppose Ip = }m kmI , where I m = [aj, b j 1] _ j _< k are the proper k-interval

abstract sensor estimate inputs to the processor p. Ij is dearly a vector of k components.
S

If Ii,. .. , Is are s disjoint intervals and I = U Ij, then define
j=1

IA= {ct+ 3(1-t) IC, P3E I andtc[0,1]}

Thus if

Ii- -a ,b jh],1_jsandai<bi<...<as<bs, thenIA=Ia ,b s]

31

A : I JA can be called the filler function and from its definition, it is clear that it

fills up the gap between disjoint intervals to give one single connected interval.

We now carry out the integration of the vectorial input sensor estimates I1 12 and 13

componentwise. The componentwise integration is the same as the 1-interval integration

except that we use the filler function to get a 1-interval output estimate, so that the

vectorial output is also a k component vector. To this effect:
-pJ

Define Ip = {I}m =1

where IP= SupPHiP]

=SuPp[f(HII+HI2+HI3)+f(HIiH + H H m+ H I 3 H m) + f (H I Hmm H 3) J

Thus Ip is the output k-interval estimate where the integration has been

performed component-wise following the example of the 1-interval estimates discussed

obove. The width vector of the k-interval estimate output Ip is given by:

W(Ip) = HiP(x)dx m=l

W(Ip) is a vector with k-components with each component being a non-negative

real number and not an interval as in the case of I1, 12, 13 and Ip. We may further obtain a

scalar measure of the width by integrating in some manner desirable (e.g., taking a

weighted sum) the components of W(Ip)

Thus we have described functionally the scheme of integration of the abstract

sensor inputs 11 12 and 13 to obtain an abstract sensor output in the case of 1-interval and

then generalized the idea to k-interval estimates by componentwise integration. This

integration is in accordance with the integration algorithm. We have treated here the

case of the sensors giving a uniformly distributed signal over the associated interval.

32

However, if the sensor can weight the values of its dense output, then we can introduce

the appropriate weight function in place of products of Heaviside function. The rest of the

analysis may be carried out in an analogous manner with a few modifications. The

interval width measures in the case of non-uniform distribution of signal values are

genuine integrals and not mere measures of rectangular areas as in our present

discussions. The reason for writing interval width measures in this discussion as integrals

is to suggest this generalization.

The number of inputs considered so far is three as dictated by the architecture of

the sensor network. However, our functional representation is easily extendible to the

case when the architecture is not just binary but n-arv at each processor.

REFERENCES

[1] Durrant-Whyte, H.F., "Consistent Integration and Propagation of

Disparate Sensor Observations," Int. J. Robot. Res., V. 6, No. 3,4, 1987,pp. 3 -

2-1

[2] Durrant-Whyte, H.F., "Sensor Models and Multisensor Integration," Int. J.

Robot. Res., V. 7, No. 6, 1988, pp. 97-113.

[31 Gusella, R., Zatti, Stefano, "The Accuracy of the Clock Sync. Achieved by

TEMPO in Berkeley Unix 4.3 BSD", IEEESE, July 1989.

[4] Henderson, T.C., Allen, P.K., Mitchie, A., Durrant-Whyte, H., Snyds, W.,

Eds., "Workshop on Multisensor Integration in Manufacturing

Automation," Dept. of Comp. Scie., Univ. of Utah, Snowbird, Tech. Rpt.

UUCS-87-006, Feb. 1987.

[$] Henderson, T.C. and Weitz, E., "Multisensor Integration in a

Multiprocessor Environmtnt," in Proc. ASME Int. Comput. in Engr. Conf.

and Exhibition, R. Raghavan and T.J. Cokons, Eds., New York, NY, Aug. 87,

pp. 3- 1-316.

H] Yvasimha, D.N., Iyengar, S.S., "Information Integration and

Synchronization in Distributed Sensor Networks," Tech. Rpt., OSU-CISRC-

2/91-TR9, Dept. of Comp. and Inf. Sc., The Ohio State University,

Columbus, OH.

[71 Johnson, B.W., "Design and Analvsis of Fault Tolerant Digital Systems,"

Addison-Wesley, 1989.

33

[81 Kashyap, R. L., Oh, S. G., Madan, R N., "Estimation of Sinusoidal Signals

with Colored Noise Using Decentralized Processing," IEEE Trans. on ASSP,
Vol. 38, No. 1, 1990, pp. 91-104.

[91 Lamport, L., "Synchronizing Time Savers, " DEC SRC TR, June, 87.
[101 Luo, R.C. and Kay, M.G., "Multisensor Integration and Fusion in

Intelligent Systems," IEEE Trans. on SMC, V. 19, No. 5, 1989, pp. 001-931.
[III Luo, R.C., Lin, M. and Scherp, R.S., "Dynamic Multi-sensor Data Fusion

System for Intelligent Robots," IEEE J. Robot. Automat., V. RA-4, No.

4,1988, pp. 386-396.

[121 Marzullo, K., " Implementing Fault-Tolerant Sensors," TR89-997, Dept. of
Comp. Science., Cornell Univ., May 1989.

[[13] Wesson, R. et. al., "Network Structures fcr Distributed Situation

Assessment", IEEE Trans. on SMC., Jan. 1981, pp. 5-23.
[14] Yemini, Y., "Distributed Sensors Networks(DSN): An Attempt to Define

the Issues," Proc. of the Distributed Sensors Network Workshop,Carnegie
Mellon Univ., 1978, pp. 53-60.

[15] Zheng, Y.F., "Integration of Multiple Sensors into a Robotic System and its

Performance Evaluation," IEEE Trans. on Robot. Auto, iat., V. 3, No. 5, Oct.
1989, pp. 658-669.

34

LIST OF SYMBOLS

A The minimum width of overlap for two intervals to be considered

intersecting.

EP, E Maximum allowable deviation in time of a clock on a PE.

Maximum allowable deviation in time of clock on the central time

server.

Kp,K1 Maximum allowable drift rate in time of a clock on a PE.

G Maximum allowable drift rate of the clock in the central time server.

5min, 5max Minimum and Maximum channel transmission delay.

min ,;max Minimum and Maximum delay in receiving the message sent

by the central time server to any PE.

y[Maximum tolerance in time that a node can tolerate between

intervals that can be integrated.

CT Current time as seen by a processing element's clock.

Ii ith abstract estimate.

(ui - li) Width of an interval.

